

Tetrahedron Letters 42 (2001) 727-729

TETRAHEDRON LETTERS

A highly rearranged tetraprenylxanthonoid from *Garcinia* gaudichaudii (Guttiferae)

Jien Wu, Yuan-Jian Xu, Xiao-Fang Cheng, Leslie J. Harrison, Keng-Yeow Sim and S. H. Goh*

Department of Chemistry, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 Received 4 September 2000; revised 23 October 2000; accepted 2 November 2000

Abstract—Gaudispirolactone (1), a novel degraded and rearranged tetraprenylated xanthone isolated from the bark of *Garcinia gaudichaudii*, has the unique hexacyclic dioxospirotrione structure. © 2001 Published by Elsevier Science Ltd.

Garcinia gaudichaudii Planch et Triana from Borneo is a local medicinal plant, the juice from the leaves being used by the natives to rub on cuts and minor wounds.¹ We have found that the bark provides an array of xanthonoid compounds which are surprisingly different from the leaves of the plant.^{2,3} Gaudispirolactone (1) was isolated together with another new compound, 7-isoprenylmorellic acid (2), and other known compounds.⁴

Gaudispirolactone (1) was obtained as a yellow oil, $[\alpha]_{D}^{29.7}+64$ (c 1.5, CHCl₃). The molecular formula of $C_{32}H_{34}O_8$ (ESIMS, m/z 569.2134, $[M+Na]^+$) approximated that for a tetraprenylxanthonoid, but the IR absorptions of the carbonyl groups (1735, 1689 and 1646 cm⁻¹) and the NMR data of **1** (Table 1) did not indicate much similarity to the caged structure of gaudichaudiones or gaudichaudiic acids previously isolated from the leaves of the plant.⁵ However, 1 exhibited NMR signals showing the presence of the B and C rings of prenylated xanthonoids, e.g. (a) a pair of doublets at $\delta_{\rm H}$ 5.53 and 6.60 (d, J=9.9 Hz) together with two methyl groups at δ 1.43 and 1.45 accounted for a dimethylpyran ring system, (b) a chelated phenolic proton at $\delta_{\rm H}$ 12.04, and (c) a vinylic proton at $\delta_{\rm H}$ 5.22 (t, J=7.2 Hz) and corresponding ¹³C data for all these features. The spectra also showed a clear absence of a non-conjugated ketone, but the presence of a ketal carbon ($\delta_{\rm C}$ 109.6) was noteworthy. With only 32 carbons in the structure instead of the usual 33 carbons for a tetraprenylxanthonoid, 1 was likely to have lost a carbonyl carbon in the degradation and rearrangement of a tricyclo-4-oxa $[4.3.1.0^{3.7}]$ decane precursor which was a prominent structural feature of gaudichaudiic acids and morellic acids.

The presence of a lactone carbonyl carbon ($\delta_{\rm C}$ 162.6, C-15) and the HMBC connectivities between the Me-16 at $\delta_{\rm H}$ 1.74 and carbon signals at $\delta_{\rm C}$ 162.6 (C-15), 128.1 (C-14), and 134.9 (C-13), and the vinylic proton H-13 at $\delta_{\rm H}$ 6.26 with the ketal carbon at $\delta_{\rm C}$ 109.6 (C-11) indicated 1 had a partial structure of a six-membered α , β -unsaturated lactone (Fig. 1). The remaining part of the core ring structure was deduced from the following HMBC correlations. (a) The methylene protons at $\delta_{\rm H}$ 2.59 and 2.77 (H-6 α and H-6 β) correlated with quaternary carbons at $\delta_{\rm C}$ 196.2 (C-7), 87.8 (C-10a) and a methine carbon at $\delta_{\rm C}$ 51.7 (C-5); (b) the vinylic proton at $\delta_{\rm H}$ 6.80 (H-8) correlated with quaternary carbons at $\delta_{\rm C}$ 87.8 (C-10a) and 184.4 (C-9); (c) the methine proton at $\delta_{\rm H}$ 3.24 (H-5) correlated with C-10a; (d) the chelated hydroxyl proton at $\delta_{\rm H}$ 12.04 correlated with the aromatic carbons at $\delta_{\rm C}$ 156.7 (C-1), 103.6 (C-2), and 102.8 (C-9a). In addition to the main skeleton, other readily identifiable pendant residues were the isoprenyl group substituted at C-4, which was deduced from HMBC correlations H-25/C-3,4,4a,26,27, and the dimethylpyran ring fused to the C ring of the xanthonoid, which was deduced from the HMBC correlations H-20/C-1,3,22; H-21/C-2,22 and the ROESY correlation 1-OH/ H-20.

The relative stereochemistry of **1** was supported from the postulated biosynthesis (Fig. 3) and confirmed by 2D ROESY spectra (Fig. 1 and Table 1). The key ROESY correlations were between H-18 and H-12 α , H-12 β , which indicated Me-18 and C-12 were on the same side of the five-membered ring. The Me-18 was

Keywords: gaudispirolactone; xanthonoid; Garcinia gaudichaudii; cytotoxic.

^{*} Corresponding author.

^{0040-4039/01/\$ -} see front matter @ 2001 Published by Elsevier Science Ltd. PII: S0040-4039(00)01955-9

Table 1. INVIN Gata for gaudispiroracione (Table	1.	NMR	data	for	gaudispirolactone	(1)) ^a
--	-------	----	-----	------	-----	-------------------	--------------	----------------

#	¹ H NMR	¹³ C NMR	НМВС	COSY	ROESY
1 2 3 4 4a	12.04, s (-OH)	156.7 103.6 162.3 109.9 156.9	1, 2, 9a		20
5	3.24, t, <i>J</i> =6.5 Hz	51.7	6, 7, 10a, 19	6α, 6β	6β
6 7	α : 2.59, dd, J =16.9, 6.5 Hz β: 2.77, dd, J =16.9, 6.5 Hz	36.8 196.2	5, 7, 10a, 17 5, 7, 10a, 17	5, 6β 5, 6α	18 5, 18
8 8a 9 9a 10a	6.80, s	131.6 145.5 184.4 102.8 87.8 100.6	9, 10a		
11	A: 2.65, d, br, $J = 17.4$ Hz B: 2.54 d br $J = 17.4$ Hz	33.8		12B, 13 12A 13	13 13
13 14 15	6.26, s, br	134.9 128.1 162.6	11, 14	12A, 12B, 16	12A, 12B, 16
16 17	1.74, d, <i>J</i> =1.5 Hz	16.6 84.4	13, 14, 15	13	13
18 19	1.20, s 1.71, s	25.7 30.5	5, 17, 19 5, 17, 18		6α, 6β, 12Α, 12Β
20 21 22	6.60, d, <i>J</i> =9.9 Hz 5.53, d, <i>J</i> =9.9 Hz	115.0 126.7 79.1	1, 3, 22 2, 22	21 20	1-OH, 21 20, 23, 24
23	1.43, s	28.5	21, 22, 24		20
24	1.45, s	28.6	21, 22, 23	26	20
25 26 27	3.26, d, $J = 7.2$ Hz 5.22, t, $J = 7.2$ Hz	21.6 121.9 131.7	3, 4, 4a, 26, 27 28, 29	26 25	26, 28 25, 29
28 29	1.76, s 1.67, s	18.0 25.7	26, 27, 29 26, 27, 28		25 26

^a Recorded in CDCl₃ at 500 MHz (¹H NMR) and 125 MHz (¹³C NMR).

Figure 1. Selected HMBC AND ROESY correlations of gaudispirolactone (1).

assigned as β because it showed correlations with H-6 α and H-6 β while H-5 showed only one correlation with H-6 β . Thus the structure of **1** was depicted as shown in Fig. 1.

7-Isoprenylmorellic acid (2)⁶ was isolated as a yellow oil, $[\alpha]_D^{29.7}$ -191.5 (*c* 3.4, CHCl₃). A molecular formula of C₃₈H₄₄O₈ (ESIMS, *m/z* 629.3098, [M+H]⁺) indicated a pentaprenylxanthonoid. ¹H and ¹³C data showed resonances for the skeleton of gaudichaudiic and morellic acids. Extensive analyses of 1D (¹H, ¹³C) and 2D

Figure 2. Selected HMBC correlations of 7-isoprenylmorellic acid (2).

Figure 3. Postulated biosynthesis pathway for gaudispirolactone (1).

(¹H-¹H COSY, HMQC, and HMBC) NMR spectra of **2** showed that it was a 7-prenylated derivative of morellic acid.⁵ The structure of **2** shown in Fig. 2, was supported by the presence of HMBC cross peaks between the methine protons H-31 at $\delta_{\rm H}$ 2.44 and 2.61 and the carbons at $\delta_{\rm C}$ 204.1 (C-6), 53.3 (C-7), 30.9 (C-11) 139.2 (C-8).

It is reasonable to assume that 1 was a degraded derivative of the tricyclo-4-oxa[$4.3.1.0^{3.7}$]decane skeleton comprising gaudichaudiones and gaudichaudiic acids furnished by this plant. A plausible biosynthetic route involving morellic acid, which is the major natural product from the bark, is given in Fig. 3.

References

- Perry, L. M.; Metzger, J. In *Medicinal Plants of East and* Southeast Asia: Attributed Properties and Uses; MIT Press: Cambridage, Massachusetts, 1980; pp. 175; Ashton, P. S. In *Manual of the Non-Dipterocarp Trees of Sarawak;* Forestry Dept., Sarawak., 1988; Vol. 2, pp. 164–165.
- Cao, S. G.; Sng, V. H. L.; Wu, X. H.; Sim, K. Y.; Tan, P. H. K.; Pereira, J. T.; Goh, S. H. *Tetrahedron* 1998, 54, 10915–10924.

- Cao, S. G.; Wu, X. H.; Sim, K. Y.; Tan, P. H. K.; Pereira, J. T.; Wong, W. H.; Hew, N. F.; Goh, S. H. *Tetrahedron Lett.* 1998, 39, 3352–3356.
- Other compounds isolated: morellic acid (0.03%), isomorellin (0.0005%), isomoreollin (0.0003%), isomorellinol (0.0003%), gaudichaudiic acid E (0.001%), isomorellic acid (0.001%).
- 5. Asano, J.; Chiba, K.; Taba, M.; Yoshii, T. *Phytochemistry* **1996**, *41*, 815–820.
- 6. NMR data of **2**. ¹H NMR: δ 12.98 (1H, s, OH), 7.32 (1H, s, H-8), 6.58 (1H, d, J=9.9 Hz, H-21), 6.07 (1H, t, J=7.3 Hz, H-17), 5.48 (1H, d, J=9.9 Hz, H-22), 5.22 (1H, t, J=7.3 Hz, H-32), 5.05 (1H, t, J=6.1 Hz, H-27), 3.33 (1H, m, H-26a), 3.17 (1H, m, H-26β), 2.95 (1H, m, H-16a), 2.87 $(1H, m, H-16\beta), 2.61 (1H, m, H-31\alpha), 2.57 (1H, d, J=9.2)$ Hz, H-12), 2.44 (1H, m, H-31β), 1.75 (6H, s, H-35 and H-30), 1.75 (3H, s, H-19), 1.71 (3H, s, H-34), 1.69 (3H, s, H-15), 1.65 (3H, s, H-29), 1.45 (3H, s, H-25), 1.41 (3H, s, H-24), 1.24 (3H, s, H-14). ¹³C NMR: δ 204.1 (C-6), 179.0 (C-9), 169.0 (C-20), 161.2 (C-3), 157.7 (C-4a), 157.3 (C-1), 139.2 (C-8), 136.8 (C-33), 135.9 (C-17), 133.0 (C-8a), 131.5 (C-28), 128.0 (C-18), 126.1 (C-22), 122.1 (C-27), 118.2 (C-32), 115.4 (C-21), 108.1 (C-4), 103.1 (C-2), 100.6 (C-9a), 90.6 (C-5a), 84.2 (C-5), 84.1 (C-13), 78.6 (C-23), 53.3 (C-7), 50.5 (C-12), 30.9 (C-11), 29.9 (C-15), 29.4 (C-16), 28.8 (C-14), 28.7 (C-31), 28.5 (C-25), 28.3 (C-24), 25.9 (C-35), 25.7 (C-29), 21.6 (C-26), 20.8 (C-19), 18.1 (C-30).